Identification of Fish Species using Neural Networks
نویسندگان
چکیده
Abstract : The number of workers engaged in Japanese fisheries and related industries in Japan has decreased markedly in recent years due to factors such as an aging workforce, issues related to the management of natural resources and the environment, international affairs, and changes in consumer food preferences. There is therefore a need to mechanize and automate aspects related to work usually performed by humans in the fishery industry. In this research, a system for identifying fish species has been developed. The system employs neural networks which learn to differentiate between different fish species using reference points. Reference points are characteristic points that are extracted from images of the body surface of the fish using a method that employs the truss protocol. The ratios of specific truss lengths between reference points relative to total body length are used to compile the dataset used for network inputs. For fish with bodies that have been contorted, only data from the vicinity of the fish head are used for network learning. Given that body color is an important characteristic for species identification, an effective method for capturing color data was investigated and the effectiveness of the proposed method and optimal number of color parameters was determined.
منابع مشابه
Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملAutomatic identification of species with neural networks
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a da...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملNeural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کامل